Миссия учителя. Как научиться понимать учеников и быть с ними в "плоскости доверия"


Интересно посмотреть на актуальные вопросы педагогики через аксиомы стереометрии. Стереометрия — это раздел геометрии, в котором изучаются свойства фигур в пространстве. Основными фигурами в пространстве являются точки, прямые и плоскости. Скажем, первая точка — это ученик. Логично предположить, что второй точкой станет родитель. Согласно аксиоме: "Через любые две точки проходит прямая, и притом только одна", мы получили прямую семейных отношений. На этой прямой изначально существуют взаимосвязи, ценности, ожидания, понимание друг друга.


Обсудить статью (уже 1 коммент.)
Опубликовать свой материал
Вот рядом с этой прямой я ставлю еще одну точку — это учитель. И согласно аксиоме стереометрии: "Через любые три точки, не лежащие на одной прямой, проходит плоскость и притом только одна". Пока между ними нет тесных взаимосвязей, которые есть между ребенком и родителем.

И мне как учителю видится необходимым выстроить эти связи таким образом, чтобы они были продуктивны и способствовали развитию всех участников отношений.

Разрешите представить вашему вниманию теорему о плоскости доверия.

Теорема: "Если в плоскости выстроить комфортные связи между учеником, родителем и учителем, то данная плоскость является плоскостью доверия".
 

Доказательство:
  1. Изначально ребенок доверяет родителю.
  2. Родитель доверяет учителю обучать и принимать участие в воспитании своего ребенка.
  3. Миссия учителя не потерять доверие родителя и овладеть доверием ученика, тем самым создать плоскость доверия. Передо мной всегда стоит проблема понимания ученика, и она довольно сложная. Каждый ребенок имеет свой внутренний мир и выступает для меня "загадкой", которую необходимо отгадать. О чувствах, мыслях, желаниях, переживаниях ученика мы (взрослые) можем только догадываться по его поведению, словам и т.д. В своей практике я использую два метода, помогающие понять моих учеников.

Как понять учеников?

  • Метод интроспекции заключается в том, что учитель ставит себя на место ученика. А затем в своем воображении воспроизводит чувства, которые, по его мнению, ученик испытывает в данной ситуации. На основе анализа осуществляется общение с учеником.
  • Метод логического анализа (метод мыслителей). Чтобы понять ученика, я как учитель математики выстраиваю систему интеллектуальных представлений о нем и о ситуации, в которой находится ребенок. Это дает мне возможность создать комфортные связи между мной и учеником.

Мои правила общения с детьми

При общении с ребенком, я не начинаю со слов "Ты должен…"

Ты должен хорошо учиться!
Ты должен думать о будущем!
Ты должен уважать старших!
Ты должен слушаться учителей и родителей!

Я говорю детям так:

Я уверена, что ты можешь хорошо учиться
Интересно, каким человеком ты хотел бы стать? Какую профессию планируешь выбрать?
Ты знаешь: уважение к старшим — это часть общей культуры человека
Конечно, ты имеешь свое собственное мнение, но к мнению старших полезно прислушиваться


Я направляю, веду, помогаю не оступиться, поддерживаю, сопереживаю, содействую, что, в свою очередь, вызывает у ребят доверие.

Мне видится необходимым и достаточным условием для достижения результата выстраивать отношения на основе правды (быть искренним и не боятся признавать свои ошибки), уважения (уметь слушать и слышать детей и их родителей) и возможности для творчества.

Следствия:

  1. Если установившиеся связи не комфортные, то это не плоскость доверия.
  2. Если хотя бы у двух участников отношений нет взаимоуважения, то это не плоскость доверия.
  3. Если в установившихся отношениях нет честности, то это не плоскость доверия.

Анализируя свой педагогический опыт, я пришла к выводу, что в моих отношениях между родителями и учениками существует плоскость доверия. Создавать и сохранять связи в плоскости доверия трудно, но для меня как профессионала это интересно.


Есть мнение? Оставьте свой комментарий:
avatar

Комментарии:
avatar
1 Попова Нина • 17:03, 16.02.2014
Гениально! И в то же время просто, доходчиво и интересно!Спасибо!