комментарии к задаче по математике
|
|
Math6609 | Дата: Среда, 11.12.2013, 03:20 | Сообщение # 16 |
Math6609
Ранг: Школьник (?)
Группа: Пользователи
|
Сообщений: |
60 |
Награды: |
0 |
Статус: |
Offline |
|
Цитата Александр_Игрицкий ( ) Никогда не было недостатка как в авторах различных новаций и их апологетах, так и в их критиках и критиканах. Это совершенно рядовые явления во всех отношениях. Самое знаменательное здесь то, что все стороны по своему правы. Судьей является лишь результат. Вот именно. У Шаталова ошеломляющие результаты, у всех этих авторов результатов нет никаких. А почему вы лучший из всего этого ряда не упомянули? "Учебники математики МГУ-школе" авторов Никольский, Потапов, Шевкин. Хотя и у них достаточно недостатков, но другие в сравнение не идут.
Понятна ваша точка зрения.
Однако, есть объективность, объективные критерии которую не спрячешь так просто, они выпирают. Учебники не удовлетворяют многим объективным критериям. 1)Они перегружены материалом, плохо продуманы. 2)Они не учитывают возрастную психологию восприятия школьников, не соответствуют мышлению детей. 3)Они пишутся наспех, лет за 10, тогда как должны лет 40, как Киселёв. 4)Они не проходят широкую апробацию. 5)Они стремятся к высокой теоретической уровню (это целая эпопея на 70 лет растянутая), а надо к понятности. 6)Они пишутся специалистами в области математики, но не педагогами в широком смысле слова, они и школах то не бывают. 7)Оформление безобразное, у большинства. 8)Они выдумывают разные частные принципы и на их основе, и пытаются выдать их за широкие, и строят на этих узких принципах педагогическую систему. Естественно узкий фундамент не выдерживает.
Натяжки, выдумки, вымочки разные до тошноты.
Ну к примеру Как давал Киселёв определение двугранного угла: Фигура, образованная двумя плоскостями исходящими из одной прямой, называется двугранным углом. А теперь послушаем Анатосяна: Двугранным углом называется фигура, образованная прямой и двумя полуплоскостями с общей границей, не принадлежащими одной плоскости.
Он вообще то русский язык чувствует или нет, этот Анатосян, педагогику он уж только по одному примеру можно сказать не учил. Как по кочкам скачешь, "фигура, образованная прямой?!" "границей не принадлежащими"?! Да как это можно такие вещи, это совсем не мелочи, это педагогическая неумелость, ограниченная культурная составляющая автора.
А вот что важнее учитель или учебник часто это произносится, что учитель важнее. Это бесспорно, хороший учитель, он есть хороший учитель от него много зависит. Шаталов например. Но ведь хороший учебник влияет и на учеников и на учителя. Хороший учебник даёт в руки учителя педагогически организованную систему учебного предмета, методически проработанную, выверенную длительным опытом многих поколений учителей, учитывающий их ошибки, тем самым хороший учебник избавляет учителя от многих ошибок, и это особенно важно для массовой школы. Хороший учебник массово поднимает среднего учителя до уровня хорошего. Но ведь у учебника есть и ещё одна цель, доступный учебник позволяет ученику самому добывать знания и осмысливать их, а плохой вызывает отвращение. Если хорошие учебники сопровождали бы ученика на протяжении учебы то это оказало бы , неоценимое влияние на их развитие и становление мышления. Эту функцию учебника не заменит ни один учитель. Хороший учебник-залог хорошего преподавания - это Ушинский сказал, думаю правильно сказал.
Учебник не пишется по заказу в год два. Он должен вырабатываться талантливым педагогом вместе с учащимися в течении всей его жизни. Педагогический талант редок, хороших математиков много, а в авторы далеко не всем дано, надо много чего помимо математики знать. Главным свойством хорошего педагога должна бы быть способность сопереживать с учеником его ошибки, острая наблюдательность, способность правильно понять ход мысли ученика, причины затруднений, и правильно указать способы устранения этих затруднений и тд.и тп. Это же надо Киселёвым быть, он строит свои учебники от младших классов к старшим и соответственно выбирает методы изложения, отвечающие форме мышления возраста ученика.
Всем этим авторам следовало бы понять сколько бы им надо учиться у Киселёва.
Например показательно честное откровение Абрамова, академика, с Колмогоровым соавтор Геометрии. Сказал, только после долгого и многолетнего изучения и анализа учебников Киселёва с точки зрения педагогики он стал способен немного понимать срытые педагогические тайны этих шедевров, глубочайщую педагогическую культуру их автора. В Англии, в Израиле просто взяли не мудрят Киселёва перевели учат детей и Китайцы кажется тоже.
Тут университет наш порекомендовал математическим школам лет 15-20 назад, здесь у нас, плюнуть и учить по Киселёву, основы давать, ничего не мудрить, а потом добавлять уже, чего у него нет. Эффект оказался ошеломляющим. Многие проблемы учителя говорят просто отпали сами собой. Дети с удовольствием стали учить геометрию. и по сей день старые учителя наработали по Киселёву и нет проблем.
11.12.2013
Сообщение отредактировал Math6609 - Среда, 11.12.2013, 03:24
|
|
|
| |
|
Александр_Игрицкий | Дата: Среда, 11.12.2013, 08:02 | Сообщение # 17 |
Сообщений: |
11095 |
Награды: |
129 |
Статус: |
Offline |
|
Цитата Math6609 ( ) А почему вы лучший из всего этого ряда не упомянули? "Учебники математики МГУ-школе" авторов Никольский, Потапов, Шевкин. В списке перед Шарыгиным. По Вашему - это лучший, а многим Мордкович ближе. Цитата Math6609 ( ) Хотя и у них достаточно недостатков, но другие в сравнение не идут. Идут. Ещё как идут! Цитата Math6609 ( ) Хороший учебник-залог хорошего преподавания - это Ушинский сказал, думаю правильно сказал. А я думаю, что залог хорошего образования - хороший учитель. И в это всего лишь мнение, пусть даже Ушинского. Цитата Math6609 ( ) А теперь послушаем Анатосяна: Двугранным углом называется фигура, образованная прямой и двумя полуплоскостями с общей границей, не принадлежащими одной плоскости.
Он вообще то русский язык чувствует или нет, этот Анатосян, педагогику он уж только по одному примеру можно сказать не учил. Как по кочкам скачешь, "фигура, образованная прямой?!" "границей не принадлежащими"?! Да как это можно такие вещи, это совсем не мелочи, это педагогическая неумелость, ограниченная культурная составляющая автора. Константин! Вы сначала научитесь сами правильно понимать структуру предложений, а потом судите о культурных составляющих других авторов! "Дышите глубже: Вы взволнованы!" Сергей Львович этим определением исключил из двугранных один углов случай, когда ......
11.12.2013
|
|
|
| |
|
NePsix | Дата: Среда, 11.12.2013, 10:59 | Сообщение # 18 |
NePsix
Ранг: Аспирант (?)
Группа: Я - учитель
Должность: учитель информатики
|
Сообщений: |
879 |
Награды: |
26 |
Статус: |
Offline |
|
Цитата Александр_Игрицкий ( ) Сергей Львович этим определением исключил из двугранных один углов случай, когда ...... ...да кому он нужен, этот развернутый угол. Подумаешь!
11.12.2013
|
|
|
| |
|
Math6609 | Дата: Среда, 11.12.2013, 11:17 | Сообщение # 19 |
Math6609
Ранг: Школьник (?)
Группа: Пользователи
|
Сообщений: |
60 |
Награды: |
0 |
Статус: |
Offline |
|
Цитата Александр_Игрицкий ( ) Сергей Львович этим определением исключил из двугранных один углов случай, когда ...... Да я понимаю, вот вот, это о чем у нас речь, это как раз один из приемов Киселёва, он о детях думает, как в головы вложить определение просто и на всю жизнь, а Анотосян о всяких исключениях, (ещё и полный угол исключить , ещё и совпадающие плоскости можно исключить. В определении всего не исключишь. Определения должны только суть ухватывать, как у Киселёва. А в в тексте пояснениях в задачах можно и про эти исключения сказать )зачем ребёнку исключения, он в первый раз слышит определение,ему в сути разобраться надо. Анатосян думает о высоком научном подходе в преподавании. Поэтому и не приходится сравнивать это совершенно разные уровни. Киселев - педагогический шедевр, а Анатосян па сравнении с ним есть поделка, хотя если с Погореловым сравнить, то гораздо лучше. Смотря с чем сравнивать. Разумеется я с педагогическото и только с педагогической точки зрения смотрю, а не про математику речь, все они математики хорошие, да о детях не думают.
11.12.2013
Сообщение отредактировал Math6609 - Среда, 11.12.2013, 11:26
|
|
|
| |
|
Екатерина_Пашкова | Дата: Среда, 11.12.2013, 11:22 | Сообщение # 20 |
Сообщений: |
7235 |
Награды: |
285 |
Статус: |
Offline |
|
Цитата Math6609 ( ) Киселев - педагогический шедевр, а Анатосян поделка. То есть предлагаете сначала научить ребенка неправильно, а потом постепенно доучивать, называя это педагогическим шедевром?
Вот недавно попала в ситуацию с изучением немецкого языка. Там есть падежи. Нас сначала научили, что есть дополнение, которое всегда Akkusativ, потом выяснилось, что есть вопрос "Где", когда падеж Dativ. Мы выучили, все молодцы: Если "Где", значит, Dativ, если остальные вопросы, значит, Akkusativ. И теперь выяснилось, что и у Dativ есть другие вопросы, и что не все вопросы в Akkusativ. И придется учить заново, и заново выстраивать в голове принцип проверки падежа. Спрашивается: а почему бы не сказать сразу, какие бывают вопросы? Или хотя бы намекнуть, что правило, которое нам дали, далеко не полное, потом расширим его.
P.S. Конечно, начинать нужно с простого. Расширить, углубить и дополнить можно потом, только...
11.12.2013
|
|
|
| |
|
Math6609 | Дата: Среда, 11.12.2013, 11:55 | Сообщение # 21 |
Math6609
Ранг: Школьник (?)
Группа: Пользователи
|
Сообщений: |
60 |
Награды: |
0 |
Статус: |
Offline |
|
Цитата Екатерина_Пашкова ( ) То есть предлагаете сначала научить ребенка неправильно, а потом постепенно доучивать, называя это педагогическим шедевром? Вот у Киселёва правильно, а у Анатасяна неправильно, в определении должна быть суть и ничего кроме сути, всего исключить нельзя, поэтому нужно понимать, что можно требовать от определения, а чего нельзя. Он понимает, а друге авторы стремятся к математической строгости приходя в противоречие с понятностью. Можно у Михаэля спросить, я уже неоднократно встречал ссылку, что в Израиле и Англии и даже в Китае, учат по Киселёву. Китайские школьники кажется в международных результатах стали показывать оченб хорошие результаты, они перешли на Киселёвские учебники, еще ездят к Шаталову, ничем не брезгуют, все что передовое перенимают эти Китайцы. У них почему то нюх очень развит, и рыночные отношения, хоть и правит там коммунистическая партия.
Добавлено (11.12.2013, 11:55) --------------------------------------------- Цитата Екатерина_Пашкова ( ) Вот недавно попала в ситуацию с изучением немецкого языка. Там есть падежи. Нас сначала научили, что есть дополнение, которое всегда Akkusativ, потом выяснилось, что есть вопрос "Где", когда падеж Dativ. Akkusativ, - кого? что? Dativ это дательный падеж, и отвечает на вопросы кому? чему? но одновременно и творительный падеж с предлогом отражает, там у них не так просто, не совпадает с нашими привычными, это нормально, сто раз придётся переучивать и углубляться. Это закономерно, при изучении всегда сначала ограниченный обзор и глубина и только постепенно можно овладеть если усиленно работать. Какой смысл сразу все мелочи излагать вы утонете в этих мелочах и ничему не научитесь.
Сначала суть, потом детали. О чем и речь у нас с Александром пошла. У Киселёва суть в определении, а исключать полный, развернутый угол, совпадающие плоскости, извините это уже не определение, а неперевариваемая каша будет, что и происходит. А можно поставить вопрос и так: надо ли их исключать? Нельзя разве представить развернутый двугранный угол? А что понимать, это две плоскости или пространство заключенное между ними? Тоже давайте в определение включим. Чувствуете какое определение на страницу может может получиться? Краткость и суть дела, больше от определения ничего невозможно требовать.
11.12.2013
Сообщение отредактировал Math6609 - Среда, 11.12.2013, 16:41
|
|
|
| |
|
alsergast | Дата: Среда, 11.12.2013, 14:45 | Сообщение # 22 |
alsergast
Ранг: Профессор (?)
Группа: Пользователи
|
Сообщений: |
4335 |
Награды: |
58 |
Статус: |
Offline |
|
Цитата Math6609 ( ) А теперь послушаем Анатосяна: Цитата Math6609 ( ) Анотосян Атанасян.
11.12.2013
|
|
|
| |
|
Math6609 | Дата: Среда, 11.12.2013, 16:29 | Сообщение # 23 |
Math6609
Ранг: Школьник (?)
Группа: Пользователи
|
Сообщений: |
60 |
Награды: |
0 |
Статус: |
Offline |
|
Цитата alsergast ( ) Атанасян. Ну хорошо, хорошо, пусть Анатасян, нисколько не возражаю, суть определения не меняется. Что по определению скажете, как дети лучше и быстрее поймут?
11.12.2013
Сообщение отредактировал Math6609 - Среда, 11.12.2013, 16:41
|
|
|
| |
|
miflin | Дата: Среда, 11.12.2013, 17:17 | Сообщение # 24 |
miflin
Ранг: Профессор (?)
Хмырь обыкновенный
Группа: Пользователи
|
Сообщений: |
2663 |
Награды: |
87 |
Статус: |
Offline |
|
Цитата Math6609 ( ) Ну хорошо, хорошо, пусть Анатасян, нисколько не возражаю Вообще-то математика и расхристанность как-то не очень сочетаются. На другом форуме (физико-математическом) замечено на протяжении не одного года: если кто-то вновь прибывший написал Энштейн - с вероятность 100% будет гнать пургу.
Помню, где-то читал шутливое - если математику и нематематику поручить незнакомую им работу, то "математик сделает лучше". В каждой шутке доля шутки.
Короче, коверкать фамилии - не комильфо. Это несколько снижает уровень доверия.
11.12.2013
|
|
|
| |
|
alsergast | Дата: Среда, 11.12.2013, 18:12 | Сообщение # 25 |
alsergast
Ранг: Профессор (?)
Группа: Пользователи
|
Сообщений: |
4335 |
Награды: |
58 |
Статус: |
Offline |
|
Цитата Math6609 ( ) пусть Анатасян, нисколько не возражаю, суть определения не меняется. Конечно - ведь от искажения терминов суть оперделения не меняется... Просто в школе, насколько я знаю, используются учебники Атанасяна, а вот про Анатасяна слышать не приходилось. Цитата Math6609 ( ) Что по определению скажете, как дети лучше и быстрее поймут? Я скажу, что мне не нравится ни то, ни другое: и там, и там есть недоговорённости. И их гибрид типа "фигура в пространстве, образованная двумя полуплоскостями, исходящими из одной прямой", по-моему, намного понятнее и проще.
11.12.2013
Сообщение отредактировал alsergast - Среда, 11.12.2013, 18:13
|
|
|
| |
|
micarest | Дата: Среда, 11.12.2013, 18:20 | Сообщение # 26 |
micarest
Ранг: Первоклашка (?)
Группа: Пользователи
Должность: математика
|
Сообщений: |
34 |
Награды: |
1 |
Статус: |
Offline |
|
Я все-таки вернусь к теме: как объяснить? Пусть у двух человек поровну рублей. Сколько один должен дать другому, чтобы у другого стало на 2 рубля больше? Девочка дает ответ: 2 рубля. Не говоря ни слова показываем это оперативно и она видит, что разница уже 4 рубля. Итак, сначала учим из равного делать разное. Если делать наоборот - значит решать уравнение. Теперь к задаче. Допустим глупость: маме и сыну поровну лет или 14. Но ведь этого не может бытьЁ! Сколько мама отдает сыну лет для разницы 22? Понятно, что половину. Тогда у сына забираем и маме отдаем: 14-11, 14+11. Именно так решаются задачи, связанные с отношением "больше на", которое СЛОЖНЕЕ отношения "больше в" Не понимая этого, в арифметику была введена формальная алгебра. Задачи стали решаться проще, но исчезло мышление. А вот мышление без количественных отношений невозможно.
11.12.2013
|
|
|
| |
|
Math6609 | Дата: Среда, 11.12.2013, 19:40 | Сообщение # 27 |
Math6609
Ранг: Школьник (?)
Группа: Пользователи
|
Сообщений: |
60 |
Награды: |
0 |
Статус: |
Offline |
|
Цитата alsergast ( ) И их гибрид типа "фигура в пространстве, образованная двумя полуплоскостями, исходящими из одной прямой", по-моему, намного понятнее и проще. Это и есть Киселёвское определение и хорошо ощущается лёгкость и понятность такого определения. И всякое накручивание строгости только вредит.Добавлено (11.12.2013, 19:40) ---------------------------------------------
Цитата micarest ( ) Задачи стали решаться проще, но исчезло мышление. Михаэль, мы за твоими полётами не можем уследить. Некопенгагены. Я прочитал твои работы, формальная логика не такая, диалектическая не та, а какую надо? Топологию в школу, функциональный анализ с детского сада. Не знаю как остальные, но я ей богу ничего не могу понять о чем ты пишешь.
Скажи пожалуйста, правда ли, что в Израиле преподавание геометрии ведут по Киселёвскому учебнику?
11.12.2013
Сообщение отредактировал Math6609 - Среда, 11.12.2013, 19:32
|
|
|
| |
|
alsergast | Дата: Среда, 11.12.2013, 20:04 | Сообщение # 28 |
alsergast
Ранг: Профессор (?)
Группа: Пользователи
|
Сообщений: |
4335 |
Награды: |
58 |
Статус: |
Offline |
|
Цитата Math6609 ( ) Это и есть Киселёвское определение А это тогда чьё? Цитата Math6609 ( ) Фигура, образованная двумя плоскостями исходящими из одной прямой, называется двугранным углом.
11.12.2013
|
|
|
| |
|
Math6609 | Дата: Среда, 11.12.2013, 22:11 | Сообщение # 29 |
Math6609
Ранг: Школьник (?)
Группа: Пользователи
|
Сообщений: |
60 |
Награды: |
0 |
Статус: |
Offline |
|
Добавлено (11.12.2013, 22:11) --------------------------------------------- Цитата alsergast ( ) Фигура, образованная двумя плоскостями исходящими из одной прямой, называется двугранным углом. Наглядно, ничего не исключается и слава богу. Что тут могло не понравится другим авторам.
Я бы такое определение предпочёл. Двугранным углом называется фигура, образованная двумя плоскостями исходящими из одной прямой.
11.12.2013
Сообщение отредактировал Math6609 - Среда, 11.12.2013, 22:22
|
|
|
| |
|
Александр_Игрицкий | Дата: Среда, 11.12.2013, 22:34 | Сообщение # 30 |
Сообщений: |
11095 |
Награды: |
129 |
Статус: |
Offline |
|
Цитата micarest ( ) Именно так решаются задачи, связанные с отношением "больше на", которое СЛОЖНЕЕ отношения "больше в" Не понимая этого, в арифметику была введена формальная алгебра.Задачи стали решаться проще, но исчезло мышление. А вот мышление без количественных отношений невозможно.Задачи стали решаться проще, но исчезло мышление. А вот мышление без количественных отношений невозможно. micarest, не ищу и не жду ничьей поддержки в оценке Ваших мыслей. Скажу Вам откровенно: Вы стали скучны, потому что слишком тенденциозны. Вам не хватает легкости. Я не читал никаких Ваших трудов, а после встречи здесь на форуме желание так и не возникло. Очень скептически отношусь к любым поучениям. Не меня. Форумчан. Не смотрится. Ваш тезис: А вот мышление без количественных отношений невозможно. поставил последнюю точку. Дальнейшее Ваше словоизвержение мне уже не интересно. ... Несколько слов о совершенно непонятном для меня споре относительно "накручивания математической строгости". В строгости, с какой ведется изложение любого материала, для меня принципиально важно лишь то, чтобы она была использована в таких формах, видах, уровнях, чтобы стала понятной и усвоена обучающимися. Руководствуюсь прекрасной мыслью Л.Н.Толстого: Главное препятствие познания истины есть не ложь, а подобие истины. Это позволяет избежать самого скверного - последующего переучивания. Постоянные ссылки на многочисленных авторов несколько удивляют. Разве учитель не может из всего многообразия подходов и очень близких определений выбрать те, которые ему самому наиболее близки? Не только может, но и должен. Оптимальный, но совершенно не обязательный вариант: рассказать о всех возможных подходах и высказать свое мнение о каждом из них. Я обычно так и делаю, оговаривая тот вариант, какой принимаю сам. ... Маленькое отступление. Не берусь определить степень педагогической крамольности утверждения: работать только теми методами, с которыми согласен, которыми проникся, понимаешь и разделяешь. Любое насилие педагога над собой - тупик. Я не знаю, как вы, уважаемые форумчане, но я никогда не применяю то, что от меня далеко. Пусть даже это признано многими. Рыбу ловлю только на спиннинг. Даже если всё окружение ловит только на удочки - это не моё... ... Я уже не помню, где обсуждался вопрос о задаче «по 2 литра молока на 9 человек». Утверждение, что умножая 2 литра на 9, мы получим 18 литров, а умножая 9 человек на 2, мы получим 18 человек, показывает лишь то, что очень важные для понимания вопросы остались вне поля зрения. Более того, я не видел, чтобы эти достаточно очевидные стороны задачи где либо обсуждались. Суть же вопроса достаточно проста. Вы имеете не просто 2 литра, а 2 литра на одного человека. С точки зрения размерности этой величины это 2 л/чел. Отсюда с очевидностью 2 л/чел х 9 чел = 18 л/чел х чел = 18 л. Перед тем, как сравнить логику вычислений 2 х 9 и 9 х 2, мне бы хотелось услышать квалифицированный ответ учителей на вопрос: какое действие мы выполняем, когда утверждаем, что для 25 учеников в классе нужно 25 стульев?
11.12.2013
|
|
|
| |
|