Оптимальное планирование в MS Excel


Слайд 1
Оптимальное планирование 11 класс Криворотова Л.Н. Учитель информатики МОУ «Гимназия» г.Тырныауз 2007г.
Слайд 2
Задача • Школьный кондитерский цех готовит пирожки и пирожные. В силу ограниченности емкости склада за день можно приготовить в совокупности не более 700 изделий. Рабочий день в кондитерском цехе длится 8 часов. Если выпускать только пирожные, за день можно произвести не более 250 штук, пирожков же можно произвести 1000, если при этом не выпускать пирожных. Стоимость пирожного вдвое выше, чем пирожка. Требуется составить дневной план производства, обеспечивающий Криворотова Л.Н., МОУ КБР кондитерскому"Гимназия", цеху г.Тырныауз наибольшую выручку.
Слайд 3
Математическая модель Плановые показатели: • X – дневной план выпуска пирожков; • Y – дневной план выпуска пирожных. Ресурсы производства: • длительность рабочего дня – 8 часов; • вместимость складского помещения 700 мест. Криворотова Л.Н., МОУ "Гимназия", г.Тырныауз КБР
Слайд 4
Получим соотношения, следующие из условия Xзадачи + 4Y ≤ 1000; X + Y ≤ 700; X ≥ 0; (α) Y ≥ 0. Перейдем к формализации стратегической цели: получению максимальной выручки. Составим целевую функцию: F(x, y) = r (x + 2y) где r – цена одного пирожка в рублях Поскольку значение r - константа, то в качестве целевой функции можно принять F(x, y) = (x + 2y) Криворотова Л.Н., МОУ "Гимназия", г.Тырныауз КБР (β)
Слайд 5
Получить оптимальный план, т.е. решить математическую задачу: найти значения плановых показателей X и Y, удовлетворяющих системе неравенств (α), при которых целевая функция (β) принимает максимальное значение. Математическая дисциплина, которая посвящена решению таких задач, называется математическим программированием. А поскольку в целевую функцию f (x,y) величины X и Y входят линейно (то есть в первой степени), то наша задача относится к разделу этой науки, который называется линейным программированием. Криворотова Л.Н., МОУ "Гимназия", г.Тырныауз КБР
Слайд 6
Система неравенств (α) представлена на координатной плоскости четырехугольником ABCD и выделена заливкой. Любая точка четырехугольника является решением системы неравенств . Например, точка с координатами Х=200, Y=100. Ей соответствует значение целевой функции f(200,100)=400. Но, очевидно, искомым решением является та точка области ABCD , в которой целевая функция максимальна. Рис. 1. Область поиска оптимального плана Криворотова Л.Н., МОУ "Гимназия", г.Тырныауз КБР
Слайд 7
Использование MS Excel для решения задачи оптимального планирования
Слайд 8
Нахождение точки в которой целевая функция максимальна производится с помощью методов линейного программирования. Эти методы имеются в математическом арсенале MS Excel. Осуществляется это с помощью средства «Поиск решения». Команда находится в меню Сервис. Криворотова Л.Н., МОУ "Гимназия", г.Тырныауз КБР
Слайд 9
Подготовить электронную таблицу Рис.2. Таблица, подготовленная к вычислению Криворотова Л.Н., МОУ оптимального плана "Гимназия", г.Тырныауз КБР
Слайд 10
Сервис / «Поиск решения» Рис. 3. Начальное состояние формы «Поиск Криворотова Л.Н., МОУ решения» "Гимназия", г.Тырныауз КБР
Слайд 11
Заполнить форму Рис. 4. Форма «Поиск решения» после ввода информации Криворотова Л.Н., МОУ "Гимназия", г.Тырныауз КБР
Слайд 12
Параметры Нажать! Рис. 5. Форма «Параметры поиска решения» Криворотова Л.Н., МОУ "Гимназия", г.Тырныауз КБР
Слайд 13
Щелкнуть кнопку Выполнить Решение: f(x,y)=800 Рис. 6. Результаты решения задачи (соответствует Криворотова Л.Н., МОУ точке Вг.Тырныауз рис. 1.) "Гимназия", КБР
Слайд 14
Форма «Результаты поиска решения» Нажать! Рис. 7. Криворотова Л.Н., МОУ "Гимназия", г.Тырныауз КБР
Слайд 15
Изменить условие: Y ≥ X Решение: f(x,y)=600 Рис. 8. Результат решения задачи 2 Криворотова Л.Н., МОУ "Гимназия", г.Тырныауз КБР
Слайд 16
При решении подобных задач могут возникнуть проблемы. Например, искомого оптимального решения может вовсе не существовать – тогда программа сообщит об этом. Криворотова Л.Н., МОУ "Гимназия", г.Тырныауз КБР
Слайд 17
Контрольные вопросы 1. 2. 3. 4. 5. 6. 7. 8. 9. Каково назначение программы-надстройки "Поиск решения"? Какова общая формулировка задачи линейного программирования? В чем заключается экономический смысл задачи линейного программирования? Как будет сформулирована задача линейного программирования для рассматриваемого примера задачи об изготовлении пмрожков? Как оформить в виде таблицы, отражающей основные зависимости, математическую формулировку задачи линейного программирования? Каков смысл ячеек таблицы, подготовленной для поиска решения? Как загрузить программу поиска решения задачи линейного программирования? Какие параметры следует установить в окне "Поиск решения"? Как интерпретировать полученные результаты решения задачи линейного программирования? Криворотова Л.Н., МОУ "Гимназия", г.Тырныауз КБР

Полный текст материала Оптимальное планирование в MS Excel смотрите в скачиваемом файле.
На странице приведен фрагмент.
Автор: Криворотова Лариса Николаевна  klarisa
27.11.2009 6 20769 3730

Спасибо за Вашу оценку. Если хотите, чтобы Ваше имя
стало известно автору, войдите на сайт как пользователь
и нажмите Спасибо еще раз. Ваше имя появится на этой стрнице.



А вы знали?

Инструкции по ПК